PART 1
GEOGRAPHY

Concepts and skills

Chapter 1
The geography toolkit

1A What are the geographical concepts?
1.1 Geographical concepts

1B What are the geographical skills?
1.2 Geographical skills
1.3 Questioning and researching
1.4 Analysing
1.5 Evaluating
1.6 Communicating and reflecting

1C What is fieldwork?
1.7 Fieldwork in geography

1D What are the career opportunities for geographers?
1.8 Careers in geography

Environmental change and management

Chapter 2
Changing and managing the environment

2A What is environmental change?
2.1 Understanding environmental change
2.2 Degrading the land
2.3 Degrading the atmosphere
2.4 Degrading water
2.5 Damming the rivers
2.6 Pollutants in our water
2.7 The real cost of your mobile phone
2A Rich task: Return to Eden

2B Why does environmental change pose a challenge for sustainability?
2.8 Our environment: the key to sustaining life
2.9 Challenges to sustainability
2.10 Loss of biodiversity
2.11 Pollution
2.12 Climate change
2.13 Ecosystem decline: invasive species
2B Rich task: Invasion of the cane toad

2C How are we responding to environmental changes?
2.14 One world, many views
2.15 Our ecological footprint
2.16 Living water
2.17 Responding to salinity
2.18 Responding to deforestation
2C Rich task: Deforestation on Easter Island

Chapter 3
Coastal change and management

3A How is the coastal environment changing?
3.1 Change in coastal environments
3.2 A dynamic balance
3.3 Climate change and coasts
3.4 The impact of climate change on the Great Barrier Reef
3.5 The impact of population growth on coasts
3.6 Loss of coastal biodiversity
3.7 Coastal and marine pollution
3A Rich task: Gulf of Mexico oil spill

3B How can coastal changes be managed?
3.8 New ways of managing coasts
3.9 Change at Rainbow Beach
3.10 Integrated Coastal Zone Management (ICZM)
3.11 ICZM in the Netherlands
3.12 Protecting the coast
3.13 Reducing the impacts of coastal tourism
3.14 Indigenous management of the coast
3B Rich task: Ningaloo Coast
Chapter 4
An unequal world

4A How does wellbeing vary around the world?
4.1 Defining wellbeing
4.2 Different views of wellbeing
4.3 Mapping wellbeing
4.4 Exploring links between wellbeing
4.5 Contrasts in wealth
4.6 Living in poverty
4.7 Contrasts in health
4.8 The Sub-Saharan HIV epidemic
4.9 Contrasts in education
4.10 Rich task: Global obesity epidemic

4B How does wellbeing vary within countries?
4.10 Wellbeing in Bolivia
4.11 Wellbeing in Australia
4.12 Wellbeing in Indigenous Australian communities
4.13 Rich task: Investigating wellbeing at the local scale

Chapter 5
Inequalities in human wellbeing

5A How does the natural environment cause inequality?
5.1 Why wellbeing varies
5.2 Environmental factors and wellbeing
5.3 The influence of climate
5.4 The influence of climate change
5.5 The influence of natural resources on inequality
5.6 The influence of location on inequality
5.7 Rich task: Prisoners of geography

5B How do human activities cause inequality?
5.7 Human factors and wellbeing
5.8 Changes in population structure
5.9 Population growth and inequalities in wellbeing
5.10 Gender and inequalities in wellbeing
5.11 Technology and inequalities in wellbeing
5.12 Politics and inequalities in wellbeing
5.13 Conflict and wellbeing
5.14 The lasting impacts of conflict
5.15 War in Darfur
5.16 Conflict and refugees
5.17 Rich task: Demographic change in Japan

Chapter 6
Improving wellbeing

6A How can we improve wellbeing?
6.1 Improving wellbeing
6.2 Improving wellbeing for women and children
6.3 Improving access to education
6.4 Improving wellbeing in Australia
6.5 Improving the wellbeing of Indigenous Australians
6.6 Rich task: The wellbeing of refugees in Australia

6B Who is working to improve wellbeing?
6.6 Organisations working to improve wellbeing
6.7 IFAD: Helping to improve wellbeing in India
6.8 The government and foreign aid
6.9 The role of NGOs
6.10 Rich task: Charity

Chapter 7
Geographies of human wellbeing

7A Why wellbeing varies
7.1 Defining wellbeing
7.2 Different views of wellbeing
7.3 Mapping wellbeing
7.4 Exploring links between wellbeing
7.5 Contrasts in wealth
7.6 Living in poverty
7.7 Contrasts in health
7.8 The Sub-Saharan HIV epidemic
7.9 Contrasts in education
7.10 Rich task: Global obesity epidemic

7B How does wellbeing vary within countries?
7.10 Wellbeing in Bolivia
7.11 Wellbeing in Australia
7.12 Wellbeing in Indigenous Australian communities
7.13 Rich task: Investigating wellbeing at the local scale

7C How do human activities cause inequality?
7.13 Human factors and wellbeing
7.14 Changes in population structure
7.15 Population growth and inequalities in wellbeing
7.16 Gender and inequalities in wellbeing
7.17 Technology and inequalities in wellbeing
7.18 Politics and inequalities in wellbeing
7.19 Conflict and wellbeing
7.20 The lasting impacts of conflict
7.21 War in Darfur
7.22 Conflict and refugees
7.23 Rich task: Demographic change in Japan
PART 2
HISTORY

Concepts and skills

Chapter 7
The history toolkit ... 220

7A What are the historical concepts? 222
7.1 Historical concepts ... 222

7B What are the historical skills? .. 230
7.2 Historical skills .. 230
7.3 Questioning and researching .. 231
7.4 Analysing ... 236
7.5 Evaluating ... 239
7.6 Communicating and reflecting 240

7C What are the career opportunities for historians? 244
7.7 Careers in history ... 244

Overview

Chapter 8
The modern world and Australia .. 246

8A What factors shaped the modern world from 1918 to the present day? ... 246
8.1 Key features of the modern world from 1918 to the present day ... 246
8.2 The aftermath of World War I .. 250
8.3 The Roaring Twenties .. 252
8.4 The Great Depression .. 254

8B What were the key events of World War II? 256
8.5 World War II ... 256
8.6 The significance of World War II 260

Depth Study 1: Investigating World War II (1939–1945)

Chapter 9
World War II ... 262

9A What were the causes of World War II and what course did it take? ... 262
9.1 World War II: a timeline ... 264
9.2 Causes of World War II ... 266
9.3 Significant individual: Adolf Hitler 270
9.4 The course of the war in Europe 272
9.5 The end of the war in Europe .. 276
9.6 The course of the war in Asia and the Pacific 278
9.7 Significant individuals: wartime leaders 284
9A Rich task: The Kokoda campaign 286

9B What were some of the most significant events of World War II? ... 288
9.8 The Holocaust .. 288
9.9 The atomic bombings ... 294
9B Rich task: Antisemitism in Nazi Germany 298

9C How did World War II affect the lives of Australians and Australia’s international relationships? 300
9.10 Australia’s commitment to the war 300
9.11 Australian experiences of the war abroad 302
9.12 Life on the home front .. 304
9.13 Indigenous Australians at war 310
9.14 Australia’s international relationships 312
9C Rich task: Australian wartime propaganda posters 316

Depth Study 2: Investigating rights and freedoms (1945–the present)

Chapter 10
Rights and freedoms .. 318

10A How have Indigenous peoples in Australia struggled for rights and freedoms? .. 318
10.1 Rights and freedoms: a timeline 320
10.2 Background to the struggle for Indigenous rights 322
10.3 Indigenous protests during the 19th and 20th centuries ... 326
10.4 Significant individual: Jack Patten 328
10.5 Indigenous achievements and contributions during the 19th and 20th centuries 330
10.6 The Universal Declaration of Human Rights 332
10A Rich task: The Stolen Generations 334

10B How have African Americans and Indigenous peoples in Australia achieved change? .. 336
10.7 The US civil rights movement .. 336
10.8 Significant individual: Dr Martin Luther King Jnr 340
10.9 Australia’s civil rights movement 342
10.10 Land rights: a continuing struggle 346
10.11 Towards reconciliation ... 350
10B Rich task: Charles Perkins: a significant individual 352

10C How do activists continue the struggle for civil rights and freedoms? ... 356
10.12 Two speeches, two perspectives 354
10.13 The reconciliation movement 356
10C Rich task: The Yirrkala Bark petitions 360
Part 3
Economics and business

Concepts and skills

Chapter 11
The economics and business toolkit

11A What are economics and business concepts?
11B What are economics and business skills?
11C What career opportunities are there in economics and business?

Economic performance and living standards

Chapter 12
Measuring Australia’s economic performance

12A How is the performance of the Australian economy measured?
12B How well does the Australia economy perform compared with other economies around the world?
12C Rich task: The story behind our economic growth

Chapter 13
Living standards

13A Why do living standards vary around the world?
13B What is the connection between economic performance and living standards?

Part 4
Civics and citizenship

Concepts and skills

Chapter 14
The civics and citizenship toolkit

14A What are civics and citizenship concepts?
14B What are civics and citizenship skills?
14C What career opportunities are there within the field of civics and citizenship?

Justice at home and overseas

Chapter 15
Australia’s democracy and the global context

15A What are the key features of Australia’s democracy?
15B What are the features of a resilient democracy and a cohesive society?

Chapter 16
The Australian Constitution and the High Court

16A How does the Australian Constitution work?
16B What role does the High Court of Australia play in interpreting the Constitution?
Chapter 17
Australia’s international legal obligations 482

17A What are Australia’s global roles and responsibilities?
17.1 Australia’s role as a member of the United Nations 484
17.2 Australia’s international role and responsibilities 486
17A Rich task: Australia’s treatment of asylum seekers 490

17B How are government policies in Australia shaped by international agreements?
17.3 Australia’s international agreements 492
17B Rich task: Australia’s international obligations to Aboriginal and Torres Strait Islander peoples 496

Glossary: Geography ..498
Glossary: History ..502
Glossary: Economics and business505
Glossary: Civics and citizenship508
Index ...512
Acknowledgements ..525
Geography skills

<table>
<thead>
<tr>
<th>Skill</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing geographical questions</td>
<td>Chapter 1</td>
<td>14</td>
</tr>
<tr>
<td>Evaluating the reliability of websites</td>
<td>Chapter 1</td>
<td>18</td>
</tr>
<tr>
<td>Planning, creating and delivering a PowerPoint presentation</td>
<td>Chapter 1</td>
<td>28</td>
</tr>
<tr>
<td>Constructing overlay maps from satellite images</td>
<td>Chapter 2</td>
<td>56</td>
</tr>
<tr>
<td>Using a topographic map to explore environmental change</td>
<td>Chapter 2</td>
<td>70</td>
</tr>
<tr>
<td>Using satellite images to analyse environmental change</td>
<td>Chapter 2</td>
<td>83</td>
</tr>
<tr>
<td>Interpreting topographic maps</td>
<td>Chapter 2</td>
<td>86</td>
</tr>
<tr>
<td>Analysing environmental accidents using complex maps</td>
<td>Chapter 3</td>
<td>104</td>
</tr>
<tr>
<td>Analysing complex maps</td>
<td>Chapter 3</td>
<td>122</td>
</tr>
<tr>
<td>Constructing scatter plots using Microsoft Excel</td>
<td>Chapter 4</td>
<td>133</td>
</tr>
<tr>
<td>Developing geographical questions from media reports</td>
<td>Chapter 4</td>
<td>144</td>
</tr>
<tr>
<td>Creating multiple-line graphs</td>
<td>Chapter 4</td>
<td>149</td>
</tr>
<tr>
<td>Collecting and mapping census data</td>
<td>Chapter 4</td>
<td>154</td>
</tr>
<tr>
<td>Calculating a wellbeing index</td>
<td>Chapter 5</td>
<td>170</td>
</tr>
<tr>
<td>Constructing a population pyramid</td>
<td>Chapter 5</td>
<td>175</td>
</tr>
<tr>
<td>Constructing multiple-line graphs</td>
<td>Chapter 5</td>
<td>193</td>
</tr>
<tr>
<td>Constructing an infographic</td>
<td>Chapter 6</td>
<td>206</td>
</tr>
<tr>
<td>Creating proportional circles maps</td>
<td>Chapter 6</td>
<td>216</td>
</tr>
</tbody>
</table>

History skills

<table>
<thead>
<tr>
<th>Skill</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating questions to inform a historical inquiry</td>
<td>Chapter 7</td>
<td>231</td>
</tr>
<tr>
<td>Analysing propaganda posters</td>
<td>Chapter 7</td>
<td>237</td>
</tr>
<tr>
<td>Creating a timeline</td>
<td>Chapter 7</td>
<td>240</td>
</tr>
<tr>
<td>Writing a historical discussion</td>
<td>Chapter 9</td>
<td>286</td>
</tr>
<tr>
<td>Evaluating the reliability and usefulness of sources</td>
<td>Chapter 9</td>
<td>298</td>
</tr>
<tr>
<td>Analysing propaganda posters</td>
<td>Chapter 9</td>
<td>316</td>
</tr>
<tr>
<td>Identify and analyse the perspectives of people from the past</td>
<td>Chapter 10</td>
<td>335</td>
</tr>
<tr>
<td>Create and deliver an audiovisual presentation</td>
<td>Chapter 10</td>
<td>352</td>
</tr>
<tr>
<td>Generate different kinds of questions about the past to inform historical inquiry</td>
<td>Chapter 10</td>
<td>361</td>
</tr>
</tbody>
</table>
Economics and business skills

<table>
<thead>
<tr>
<th>Skill</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing a hypothesis</td>
<td>Chapter 11</td>
<td>371</td>
</tr>
<tr>
<td>Formulating questions about an economic issue</td>
<td>Chapter 12</td>
<td>387</td>
</tr>
<tr>
<td>Preparing an infographic</td>
<td>Chapter 12</td>
<td>395</td>
</tr>
<tr>
<td>Identifying causes and effects in economics</td>
<td>Chapter 13</td>
<td>405</td>
</tr>
<tr>
<td>Presenting an oral report to an audience</td>
<td>Chapter 13</td>
<td>417</td>
</tr>
</tbody>
</table>

Civics and citizenship skills

<table>
<thead>
<tr>
<th>Skill</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing civics and citizenship questions</td>
<td>Chapter 14</td>
<td>427</td>
</tr>
<tr>
<td>Identify and describe points of view, attitudes and values in sources</td>
<td>Chapter 14</td>
<td>429</td>
</tr>
<tr>
<td>Evaluating and comparing information</td>
<td>Chapter 15</td>
<td>455</td>
</tr>
<tr>
<td>Creating an online survey</td>
<td>Chapter 15</td>
<td>464</td>
</tr>
<tr>
<td>Gathering and assessing the reliability of information</td>
<td>Chapter 16</td>
<td>474</td>
</tr>
<tr>
<td>Creating a timeline</td>
<td>Chapter 16</td>
<td>481</td>
</tr>
<tr>
<td>Recognising and considering multiple perspectives</td>
<td>Chapter 17</td>
<td>491</td>
</tr>
<tr>
<td>Creating and delivering an audiovisual presentation</td>
<td>Chapter 17</td>
<td>497</td>
</tr>
</tbody>
</table>
Oxford Big Ideas Humanities and Social Sciences is a brand-new series developed and written to provide complete coverage of the Western Australian Curriculum: Humanities and Social Sciences – Geography, History, Economics and Business, and Civics and Citizenship – across Years 7–10.

Focus on inquiry

Each chapter of Oxford Big Ideas Humanities and Social Sciences is structured around key inquiry questions from the Western Australian Curriculum. Each unit of the text supports teachers and students as they adopt an inquiry-based approach to the key learning areas in the humanities and social sciences.

Focus on engagement

Each unit of the Student book combines a range of engaging source materials – such as photographs, videos, data tables, graphs and illustrations – with supporting questions and activities.

Source materials – such as photographs, technical illustrations, infographics, cartoons, and graphs – simplify difficult concepts and engage reluctant learners.
Focus on concepts and skills

Complete coverage of all concepts and skills provided in stand-alone reference ‘Toolkits’. All of these concepts and skills are also integrated throughout the text so students can see them at work in context.

Integrated digital support

Student obook assess

Student obook assess provides a fully interactive electronic version of the print Student book in an easy-to-read format. A host of additional resources for students – such as videos, worksheets, interactives objects, online quizzes and multimedia links – are linked to each unit in the book making easier to access than ever before.

obook assess is compatible with laptops, iPads, tablets and IWBs and access to content is provided online and offline.

Teacher obook assess

Teacher support is offered in digital format via Teacher obook assess. Teacher notes, answers, tests, additional worksheets, lesson ideas, planning tips, assessment advice and is provided for every unit. Teacher obook assess allows teachers to manage their classes by assigning work, tracking progress and planning assessment.
Environmental change and management

Coastal change and management

Coasts are areas where the land meets the sea. Home to more than one billion people around the world, coastal areas are some of the most visited and heavily populated areas on the planet. Human activities in coastal areas have affected many of the natural environmental processes there. This has led to a wide range of issues including a loss of biodiversity, high levels of pollution, erosion, and rising sea levels due to climate change. In fact, coasts are one of the Earth’s most threatened environments.

Coasts are critically important – not only to the people who live along them, but also to the health of the planet. Around the world, geographers are playing a vital role in developing strategies to manage these problems and protect coasts for future generations.

3A

How is the coastal environment changing?

1. As a class, discuss the ways in which human activities have impacted on the coastal landscape shown in Source 1.
2. How would a 2-metre rise in sea level affect this coast?

3B

How can coastal changes be managed?

1. In Source 1, what evidence can you see of management strategies to control or limit human activities that may have a negative impact on the natural environment?
2. Brainstorm further strategies that could be put in place to protect this coast. Why do you think these have not been used in this environment?
Welcome to Hong Kong, China – one of the most densely populated coastal cities on Earth. Changes brought about by human activities in coastal areas like Hong Kong need to be carefully managed in order to protect the environment for future generations.
Coasts are very dynamic places – they are constantly changing. Crashing waves, strong currents, tidal waters and hazards (such as storms and tsunamis) all transform coastal environments. People, too, bring about many changes to these environments. From simple activities, such as walking across a sand dune, to complex study activities, such as the construction of shipping ports and sea walls, humans have serious effects on coastal areas. In many cases, these activities are responsible for coastal degradation.

Coastal degradation can be observed on many scales. It may be local, like when litter is dropped on a popular holiday beach, or regional, like when an oil spill washes ashore along hundreds of kilometres of coastline. The effects of coastal degradation are varied, and can include the loss of plant and animal species, or the arrival of an invasive species that permanently affects biodiversity in the area. Examples of coastal degradation can include sand dunes being washed into the sea, changing the
coastline, or blooms of toxic algae damaging the marine environment. Source 1 provides an overview of some common forms of coastal degradation.

Over the course of this chapter we will be exploring some of the changes that are having the greatest impact on coastal environments. These include climate change, population growth in coastal areas, the loss of coastal biodiversity and marine pollution.

Pollution from inland sources such as farms, cities and industries is carried to coastal estuaries and river mouths by rivers.

Desalination plants change the salinity of water in the local area.

Land is often reclaimed from the sea in areas where flat land is in short supply.

Overfishing of certain species by commercial trawlers destroys natural ecosystems.

Invasive species from both the land and the sea impact on coastal ecosystems. Ballast water carried in ships can transport invasive species around the world.

Harbours are dredged to allow larger ships to reach ports.

Warmer waters means that fish that thrive in cooler waters move away from their usual habitats. This can cause the starvation of other animals and birds and the death of coral.

Check your learning 3.1

Remember and understand

1. What are some of the changes currently impacting on coastal environments?
2. Are coastal environments close to cities more at risk from degradation than those in remote areas? Give some reasons for your answer.

Apply and analyse

3. The three main drivers of environmental degradation are climate change, population growth and economic growth. Examine Source 1.
 a. Classify each of the causes of coastal degradation shown according to one of these three drivers.
 b. Are there any changes that could not be classified in this way?
 c. Which of the three drivers appears to be responsible for most of the changes shown?
 d. Classify each of the changes shown according to whether they are taking place on the local, regional, national, international or global scale.

4. Use the geographical concept of interconnection to describe the links between changes on the land and changes at the coast.

Evaluate and create

5. Select one of the causes of coastal degradation shown in Source 1. Suggest a solution for the problems this creates.
3.2 A dynamic balance

While this chapter focuses primarily on the ways in which human activities bring about changes to coastal environments, it is also important to remember that natural processes are constantly shaping and changing the coast too. Rocks are eroded and material such as sand is transported by the energy of waves, tides and currents, creating a landscape that is constantly evolving. All this change means that coasts are very complex environments to study and understand.

Understanding natural processes in coastal environments

Geographers often use models – such as the systems model – to understand environments, study the relationships between environments, and learn more about the intricate forces that cause changes.

To apply a systems model to a coastline, each individual landform is considered to be a separate compartment. Energy such as wind and waves, and matter such as water and sand are studied as they arrive at and leave each compartment. Arriving energy and matter are referred to as inputs and leaving energy and matter are outputs.

Source 1 How natural processes change coastal environments. Green arrows represent inputs while red arrows represent outputs.

Source 2 A range of coastal landforms are evident at Cape Byron, the easternmost point on the Australian mainland.

If the inputs are greater than the outputs, then the coastline and its landforms such as dunes and spits increase in size and the coast grows outwards. If the outputs are greater than the inputs, then landforms decrease in size and the coast retreats (see Source 1).
Dynamic equilibrium

Energy inputs on the coast – the waves and wind – often erode and transport matter, particularly sand. When matter is transported, the shape of the beach changes. When coastal landforms are in balance with energy inputs this is known as dynamic equilibrium. In this state, energy inputs are absorbed with no movement of matter, and the shapes of the landforms remain unchanged.

When dynamic equilibrium does not exist, inputs and outputs do not remain in balance, and the landscape changes.

Source 3 In June 2016, a massive storm hit the east coast of Australia, claiming up to 15 metres of the coastline in some places. The owner of this property in the Sydney suburb of Collaroy returned to his home to find his backyard and in-ground swimming pool claimed by the waves. This storm is an example of how the dynamic equilibrium in this environment was disrupted.

Check your learning 3.2

Remember and understand

1. What are the main energy and matter inputs in coastal environments?

Apply and analyse

2. Use the systems model to describe the changes that are taking place in Source 2.

3. Examine Source 3.
 a. What evidence is there for the movement of sand?
 b. How has this movement changed the shape and location of the coastline?
 c. Explain whether this is an example of dynamic equilibrium.

4. Select a coast that you know well (or one that you have visited on a field trip). Describe the energy and matter inputs and outputs in this environment and explain how these have shaped the coastline. For example, a series of sand dunes may have been formed by low energy waves bringing sand from a river mouth.

Evaluate and create

5. While many coastlines were heavily eroded by a 2012 storm on the north-east coast of the United States, others hardly changed.
 a. Brainstorm some reasons why variations exist in the way coasts are changed.
 b. Rank your reasons from the one most likely to explain these variations to the one least likely. Justify your rankings.

6. Complete a field sketch of Source 2. On your sketch, label the individual compartments that geographers would study.
3.3 Climate change and coasts

The world’s climate is changing. Human activities such as land clearing and fossil fuel burning have led to increased amounts of carbon dioxide in the atmosphere. This is leading to global warming. As a result, the Earth’s natural ecosystems are changing or adapting to the higher temperatures. Plants and animals that are unable to adapt to the warmer conditions are either moving towards the poles, where conditions are cooler, or facing extinction.

Global warming is also affecting coasts. In fact, coastal systems are undergoing greater change than virtually any other environment. As the interface between the land and the sea, coastal systems face pressures from changes in both of these places. Source 1 summarises the effects of climate change on coastal areas. One of the greatest concerns for Australian coastal areas is the rising of sea levels.

Australia’s rising seas

It can be difficult to convince people that sea levels are rising. This is because ocean and coastal waters are constantly changing as waves, tides and currents keep them in movement. Also, sea levels are rising very slowly. This doesn’t mean that they are not rising, however. In fact, sea levels have been rising for at least a century. Scientists use a combination of tide gauges and new technologies such as satellite altimeters (instruments used to measure altitude) to monitor and measure sea-level changes. These measures show that sea levels have risen by about 1.8 millimetres per year over the last century and by about 3 millimetres per year since the mid-1990s.

The physical impact of rising seas

An Australian government report in 2011 stated that ‘Sea levels are rising around Australia. A sea-level rise of a metre or more during this century is plausible. It could be less or much more. Between 16000 and 250000 individual homes are potentially at risk of inundation from a 1.1 metre rise in sea level.’

As well as the risk to homes situated on the coastline, rising sea levels are expected to cause:
- an increase in the erosion of beaches, with some beaches expected to disappear completely
- an increase in the incidence of flooding in low-lying coastal areas
- saltwater to enter coastal aquifers, destroying freshwater sources
- an increase in the severity of extreme weather events such as cyclones, bringing with them increased incidences of serious storm damage.
Coastal squeeze

As sea levels rise, important coastal ecosystems such as mangroves and salt marshes respond by retreating inland. However, in many places, sea walls and other coastal structures mean they cannot move and are therefore trapped in a narrowing strip of land (see Source 3). This process is known as coastal squeeze. This has led to healthy salt marshes and mangrove forests that are highly effective natural barriers to erosion being killed off by built structures that, in many cases, are much less effective at controlling erosion.
3.4 The impact of climate change on the Great Barrier Reef

Queensland’s Great Barrier Reef is not only one of the world’s most beautiful natural treasures, it is also one of its most important. Extending over 2300 kilometres and 14 degrees of latitude, the reef contains more than 2900 separate coral reefs and some of the world’s most extensive mangrove and seagrass ecosystems. But the combined effects of a changing climate – rising sea temperatures, rising sea levels, ocean acidification and extreme weather events – are causing problems for this remarkable natural environment.

Rising sea temperatures

Studies show that the current temperatures of the Coral Sea are warmer now than at any time over the last 300 years. On average, temperatures are 0.4° Celsius warmer than they were in the late 1800s. As average temperatures rise, warm weather events heat the sea surface to a temperature that coral polyps (the tiny organisms that construct the coral reef) cannot tolerate. The coral polyps feed on algae, but the warmer water temperature causes a build-up of poisons in the algae. In order to survive, the polyps expel the algae on which they feed, as well as some of their own tissue. This process turns the coral white and is known as coral bleaching. Over the short term, bleaching does not kill the coral polyps. However, if sea temperatures remain high over an extended period, the coral polyps eventually starve and the reef will die out.

Rising sea levels

As the climate warms, land ice is melting. For example, the Greenland ice sheet, which covers 80 per cent of Greenland, is melting an average of 195 cubic kilometres per year. The water from this melting ice ends up in our oceans. Rising sea temperatures are also causing the ocean to expand as a result of the warmer water.

In the Coral Sea, sea levels are rising by about 3 millimetres per year. This is expected to have little impact on the coral reefs as they can grow upwards by about 6 millimetres per year. Surrounding ecosystems, however, are likely to be severely affected. As saltwater intrudes further inland, environments such as mangroves and freshwater lakes are expected to change significantly. Low-lying islands are also expected to disappear beneath the rising seas, changing the distribution of nesting birds and turtles.

Source 1 An example of mass coral bleaching on the Great Barrier Reef

Source 2 The Great Barrier Reef islands such as Heron Island are important nesting sites for the endangered loggerhead turtle.
Ocean acidification

Ocean acidification is a term used to describe the change in water chemistry caused when the carbon dioxide we pump into the atmosphere is absorbed into the ocean. The extra carbon dioxide in the water makes it more acidic. Ocean acidification can have dire consequences for a coral reef.

As carbon dioxide is absorbed into the ocean, it reduces the amount of carbonate (a kind of salt) in the water. Marine animals need this carbonate to make their shells and skeletons. Reef-building animals such as coral polyps then use these shells and skeletons to create a reef. With fewer shells and skeletons available, construction of the reef is seriously limited. Over the long term, ocean acidification is expected to be the greatest challenge facing the Great Barrier Reef.

Extreme weather events

Increases in the severity and frequency of flooding and tropical cyclones also pose serious threats to the reef. Flooding brings increased sediment to the reef and this sediment smothers plants. Pesticides and other chemicals are also carried by floodwaters, adding to the levels of pollution in the water around the reef.

Cyclones generate large and powerful waves which damage corals and the reef structure. One of the worst cyclones to hit the reef in recent times was Cyclone Yasi in 2011 (see Source 3). Reefs are able to recover from these natural events but need time to do so. As extreme weather events become more frequent, reefs have less recovery time.

Check your learning 3.4

Remember and understand

1. Why are sea levels around the world rising?
2. How do rising sea levels impact on nesting birds and turtles?

Apply and analyse

3. Examine Source 3.
 a. Describe the track of Cyclone Yasi and the areas in which the winds were most destructive.
 b. In which areas was reef damage the greatest? Which areas suffered the least damage?
 c. Describe the relationship between wind speed and reef damage.

Evaluate and create

4. Construct a flow chart or mind map showing the impact of ocean acidification on coral reefs.
5. Rank the four impacts of climate change described here from the one likely to have the greatest impact on the reef to the one likely to have the least impact. Write a paragraph justifying your ranking.
6. Imagine that the Great Barrier Reef disappeared due to the combined effects of climate change. How would this affect the Queensland coast and the Queensland economy?
3.5 The impact of population growth on coasts

About one-quarter of the world’s population live within 100 kilometres of the coast. Most of the world’s megacities in both the developed and developing world are located on the coast and many of them are growing rapidly. In China, for example, 1000 people a day move to coastal cities from the country’s interior. The impact of billions of people in millions of coastal cities, towns, villages and farms has caused one United Nations expert to state that ‘humankind is in the process of annihilating coastal and ocean ecosystems’.

The impact of human settlements on coastal areas

The coast has always been an attractive place for human settlement. Coastal regions provide access to food and water, and people have long used boats and ships for transportation. But the growing number of people along the coast, together with increasing levels of trade and movement between settlements, have had many detrimental effects on coastal ecosystems:

• Engineering structures such as sea walls, groynes, breakwaters, training walls and marinas have hardened the coast and changed natural cycles of erosion and deposition.
• Changing the natural flow of water by dredging channels, diverting rivers and building dams has altered the amount of fresh water and sediment arriving at the coast, impacting on natural ecosystems and landforms.
• Discharging sewage into the ocean, the run-off of fertilisers from farms and other contaminants entering coastal waters have caused pollution in the oceans.
• Increased numbers of people in coastal areas has led to overfishing of the fish and shellfish. In some places, coastal fish stocks have fallen by 90 per cent in the last 30 years.
• Ports are often an entry point for invasive species that bring dramatic changes to coastal ecosystems.
• The presence of large numbers of people on beaches have an impact: people leave litter on beaches, they walk over native plants and impose walkways, they can destroy breeding areas of seabirds and bring predators such as dogs into the environment.

Source 1 The contrast between the natural and built-up environments of Tokyo Bay, Japan: a beach in Tokyo Bay (left), and reclaimed land near the CBD (right).
Continued growth and competition for land

Many coasts have been converted from natural ecosystems to human landscapes. Cities need space to grow and harbours for trade and transport. Mangroves, marshes and estuaries have been drained and filled in, sand dunes flattened and built over and communities of coastal plants cleared. In some places, land for expansion has been so scarce that new land has been built in bays and estuaries from rocks, rubbish and silt from the sea bed (known as land reclamation).

Case study: Tokyo Bay

The largest example of reclaimed land is Japan’s Tokyo Bay. Twenty per cent of the bay has been filled in to create 250 square kilometres of new land. This new land was created around the edge of the bay using urban waste and silt from the bottom of Tokyo Bay. The reclaimed land is now home to some of the world’s most expensive real estate including an international airport and Tokyo Disneyland.

In September 2013, Tokyo was selected as the host city for the 2020 Summer Olympic Games. Many of the sporting venues will be built on reclaimed land and this is expected to further increase the property values in the areas surrounding Tokyo Bay.

Check your learning 3.5

Remember and understand
1 What is land reclamation and why is it used?
2 Describe the changes to coastal ecosystems as a result of coastal city growth.

Apply and analyse
3 Use an atlas to research the location of the world’s megacities (cities with over 10 million people). How many megacities are coastal? How many of these coastal megacities are on river mouths or estuaries?
4 Why would the impacts described on these pages be particularly serious for small island communities?
5 Would the population impact on coasts be greatest in developing or developed countries? Discuss this with a partner and then with the class.

Evaluate and create
6 Construct an overlay map of Tokyo Bay using Source 2. On the base map show the natural outline of the bay. On the overlay show the total area of reclaimed land. Describe the spatial change over time shown on your map.
7 Use Google Earth to explore the coastline of Tokyo Bay. Estimate the percentage of the coastline that is:
 a heavily modified (for example, reclaimed land)
 b lightly modified (for example, sea walls or groynes constructed)
 c not modified.
The number of plant and animal species on a global scale is in decline. The drivers of this wave of extinction are all caused by human activities such as the destruction of habitats, over exploitation of ecosystem services, pollution, climate change and the introduction of invasive species. Recent studies of the four key coastal ecosystems – mangroves, seagrass beds, salt marshes and coral reefs – reveal that all are declining in size and biodiversity.

Mangroves

Mangroves provide a wide range of crucial ecosystem services in many tropical areas, including providing wood, protecting communities from the effects of offshore storms and as a breeding ground for fish and crustaceans. Despite their importance, about one-fifth of the world’s mangroves have been lost since 1980, an estimated area of 36 000 square kilometres (see Source 1). Countries such as Kenya, Liberia and Puerto Rico have already lost over 70 per cent of their mangrove forests. Currently, the United Nations estimates that mangrove forests are being cleared at four times the rate of land forests. Mangroves have been cleared to make way for agricultural land, harbours, housing and fish farms.

Seagrass beds

Seagrass beds are an important ecosystem for dugongs and manatees (both large sea mammals) and the leafy seadragon (see Source 3), as well as providing food for hundreds of other species. Seagrass beds are also important for stabilising sediments in the water, absorbing carbon dioxide and protecting against erosion. Over the last 200 years, about 30 per cent of the world’s seagrass beds have disappeared, many of them within the last few decades. The main threats to seagrass beds and the biodiversity they support are the dredging of the sea bed, the development of tourist marinas and water pollution from rivers and streams.

Salt marshes

Salt marshes are intertidal habitats, meaning they are above water at low tide and under water at high tide. Salt marshes are essential for healthy fisheries and coasts. They provide food, refuge and a habitat for the offspring of more than 75 per cent of marine species, including shrimp, crab and many fish. Birds also feed on the marshes. Salt marshes protect shorelines from erosion and reduce flooding by slowing and absorbing rainwater (see Source 2). They also help to maintain water quality by filtering run-off and absorbing excess nutrients. Twenty-five per cent of the world’s salt marshes have already been lost; many turned into agricultural land for farming.
Coral reefs

Coral reefs are home to one-quarter of the world’s fish species. The richest area of coral is the western Pacific Ocean. In the 1980s, 66 per cent of the region’s reefs were covered in living coral, but by 2004 this had declined to just 4 per cent. In the Caribbean Sea, the amount of living coral fell by one-quarter in a single year.

Up to a billion people rely on the ecosystem services provided by coral reefs, including food, protection from waves and storms and income from reef-based tourism. Despite their importance, the coral reefs are under threat.

As well as the threats from warmer sea temperatures causing coral bleaching, coral reefs are also in danger from human activities such as land-based industries increasing the levels of sediment and pesticides in the ocean, and from invasive species such as the crown-of-thorns starfish.

WORLD: CORAL REEFS AT RISK IN 2013 AND PROJECTED TO BE AT RISK IN 2050

Source 4

Source: Oxford University Press

Check your learning 3.6

Remember and understand

1 What ecosystem services are provided by the four coastal habitats discussed? Classify these as sinks, sources, services or spiritual functions.

Apply and analyse

2 What are the five drivers of biodiversity loss in coastal habitats? Give an example of each of these.

3 Examine Source 4.
 a Describe the distribution of the world’s coral reefs using the PQE method. For more information on the PQE method, refer to page 19 of ‘The geography toolkit’.

Evaluate and create

4 Sketch Source 1 and shade intact mangroves and disturbed mangroves using two different colours. Label features of the natural and built environments.

5 Research the threats faced by one coastal species in Australia such as the dugong, orange bellied parrot, coastal emu, grey nurse shark, marine turtles or sea snake, and present your findings to the class.
A pollutant is any substance released into the environment that has a harmful or negative effect on the natural environment. Coasts are particularly vulnerable to the damaging effects of pollution as pollutants released on land and in the sea usually find their way to the coast, carried by rivers, tides, waves and ocean currents.

Sources of coastal pollution

While it might be tempting to think that most coastal pollution comes from people using the coast such as beach-goers and people fishing, this is generally not the case. Rivers carry urban pollutants such as sewage, industrial waste, chemicals and water washed from streets and yards as stormwater to the coast. Rivers also bring pollutants from rural areas such as animal manure, pesticides and fertilisers washed from the land in heavy rain. Deforestation in river catchments also increases the amount of sediment and fresh water carried to the coast. One of the most serious consequences of coastal and marine pollution is the formation of dead zones in the ocean (see Source 1).
Marine dead zones

Marine dead zones are areas of fresh water or salt water where oxygen concentration has become too low to support life. Some rivers carry a cocktail of pollutants, all of which arrive at the coast. Waves, tides and currents then carry these pollutants along the coast and out to sea where they can cause great environmental damage. Arguably the most serious damage is the creation of marine dead zones in the ocean, devoid of oxygen and marine life. Dead zones form in summer with the warmer weather conditions encouraging algae blooms which then go on to deplete oxygen levels in deeper seas (see Source 3).

Although the number and size of marine dead zones fluctuate, they are on the increase. In the 1960s, only 39 dead zones were identified, compared with 405 in 2000. Some dead zones are only a few square kilometres in size and last only a few months. The largest dead zones, however, are massive. Dead zones in the Baltic Sea and Gulf of Mexico can be more than 18,000 square kilometres in size.

For more information on the key concept of environment, refer to page 8 of ‘The geography toolkit’.

Source 3 How a marine dead zone forms

1. Fresh water containing nitrogen and phosphorus from fields and streets washes into the ocean.
2. The nitrogen and phosphorus cause algae and phytoplankton blooms to form on the surface of the ocean.
3. As the blooms die, they drop to the sea floor and decompose, using up oxygen in the deep water.
4. In summer, as sea temperatures rise, the sea water forms into two layers. Oxygen levels in the deeper layer fall below the level needed to support marine life, and everything dies.

Check your learning 3.7

Remember and understand

1. What is meant by the term ‘marine dead zone’?
2. What are the causes of marine dead zones and what are the effects of these zones?

Apply and analyse

 a. Describe the distribution of the world's largest marine dead zones using the PQE method. For more information on the PQE method, refer to page 19 of ‘The geography toolkit’.
 b. Describe and account for the relationship between marine dead zones and areas of high population density.
4. Why do dead zones grow and decline throughout the year?

Evaluate and create

5. Marine dead zones can be explored through the geographical concept of environment, but they could also be used as an example of the geographical concept of interconnection. Describe how dead zones relate to interconnection.

6. In small groups, discuss possible solutions to the problem of marine dead zones and present your ideas to the class. You may wish to research the ways in which communities and nations have responded to a large dead zone in the Black Sea as a starting point.
3A rich task

Gulf of Mexico oil spill

The Gulf of Mexico lies between the United States, Mexico and Cuba and contains one of the world’s busiest oilfields. There are almost 4000 active oil wells in the Gulf along with a further 27,000 abandoned wells.

In April 2010, the Deepwater Horizon, an active oil well operated by British Petroleum (BP), exploded and sank to the sea floor, 1500 metres below the surface. Oil gushed from the well for three months while BP and American authorities tried desperately to plug the hole. The results were catastrophic. An oil slick covering 1500 square kilometres started moving towards the American coastline. Thousands of seabirds, fish, dolphins and turtles were covered in oil and died. Other animals along the shoreline such as crabs and molluscs were also badly affected. Local industries such as fishing and tourism collapsed, and many people lost their livelihoods.

Analysing environmental accidents using complex maps

In the case of an environmental accident, the impacts of the accident usually have multiple causes. Geographers try to go beyond the obvious cause (the oil well blew up) to explore other factors that have influenced the course and extent of the impacts. These are generally a combination of natural processes and human activities. Complex maps contain more than one set of information. Geographers use complex maps to analyse different features, reveal patterns and explain links between features in a given area. You can analyse a complex map by following these steps.

Step 1 Look carefully at the map and read its title to make sure you understand what is being shown.

Step 2 Examine the map’s legend. Complex maps can have more than one part to a legend, and these parts will be represented on the map in different ways. For example, in Source 1 natural environments are shown using a range of colours and towns and cities with a range of symbols.

Step 3 Train your eyes to look for one set of information at a time. For example, look at solid blocks of colour on the map and work out what they tell you.

Step 4 Move to a different set of information by selecting another symbol or block of colour from the legend. Examine the map to identify the symbol or areas of colour.

Step 5 Look for concentrations of the same symbol in areas to see if patterns exist.

Step 6 Note any patterns you can find on the map between different features and locations.

Step 7 Describe the degree to which patterns are connected.

Step 8 Try to suggest reasons for the connection between the two patterns.

Apply the skill

1 Using Source 1, analyse the causes and effects of the Gulf of Mexico oil spill. Once you have completed your analysis, fill in the table below as a way of organising your results. An example has been done for you.

<table>
<thead>
<tr>
<th>Geographic factor</th>
<th>Possible contributing feature</th>
<th>Description of feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical environment</td>
<td>Shape of the coastline</td>
<td>The Gulf of Mexico is an extensive broad bay which opens to the Atlantic Ocean and Caribbean Sea in the east.</td>
</tr>
<tr>
<td>Features of the sea bed</td>
<td>Location of coastal marshes</td>
<td></td>
</tr>
<tr>
<td>Natural processes</td>
<td>Ocean currents in the Gulf</td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td>Distribution of towns and cities</td>
<td></td>
</tr>
<tr>
<td>Location of oil refineries and oil rigs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3A How is the coastal environment changing?

GULF OF MEXICO: EXTENT OF OIL SPILL FROM DEEPWATER HORIZON, 2010

Source 1

Source: Oxford University Press
Extend your understanding

In addition to complex maps, geographers use information from a range of additional sources to explain how the impacts of the accident progressed and to look at the longer-term impacts on the environment. Research the Gulf of Mexico oil spill on the Internet before answering the following questions.

1. Can you identify any contributing factors to the accident that are not shown on Source 1 (for example, any economic or technological factors). What was their role in the accident? Add these factors to the table provided below.

2. Since 2000 more oil wells have been drilled in much deeper water than in the past. Some experts believe that this was an important factor in this disaster. Why do you think wells are now being drilled in much deeper water?

<table>
<thead>
<tr>
<th>Contributing factors</th>
<th>Possible contributing feature</th>
<th>Description of feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic factors</td>
<td>Level of development of USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Importance of oil in USA economy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism and fishing industries</td>
<td></td>
</tr>
<tr>
<td>Technological factors</td>
<td>Operation of oil refineries and oil rigs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical failure of oil rig</td>
<td></td>
</tr>
</tbody>
</table>

Source 2 The fire on the Deepwater Horizon oil platform

Source 3 Marine animal populations in the Gulf of Mexico were devastated by the oil spill in 2010. In total, around 750 million litres of crude oil was released into the gulf affecting fish, dolphins, whales, sea turtles and birds, as well as molluscs across the sea bed.
Sources 4 and 5 show some of the community responses and protests to the Gulf of Mexico oil spill. Shortly after the incident in 2010, civil and criminal charges were brought against BP in the American courts.

Conduct research to answer the following questions:

a. What kinds of charges were brought against BP in the aftermath of the Gulf of Mexico oil spill in 2010? Who brought these charges against BP?

b. How did BP plead in the case?

c. How was the case resolved? How was BP penalised and how much did they have to pay?

d. Do you consider this amount to be appropriate? Give reasons for your answer.

Source 4 These signs were erected on the front lawn of a home in Grand Isle, Louisiana, shortly after the Gulf of Mexico oil spill. Each cross represents something that was affected by the oil spill, including many species of fish and other sea creatures.

Source 5 Activists hold signs during a protest in front of the Hale Boggs Federal Building on the first day of the trial over the Deepwater Horizon oil rig spill on 25 February 2013 in New Orleans, Louisiana.
3.8 New ways of managing coasts

Many attempts have been made by people in the past to try to control the natural coastal processes of erosion, transportation and deposition. Unfortunately, due to a poor understanding of these natural processes, attempts have often made problems worse or simply moved them to another part of the coast. In addition, issues have tended to be managed on a local scale without regard for the broader environments that influence the coast such as river catchments and marine ecosystems.

More recently, a greater understanding of natural processes as well as a recognition of the widespread impacts of coastal management have led to new approaches. These include soft engineering (using natural processes), integrated coastal zone management (ICZM), and the protection of coastal ecosystems with special marine reserves.

Managing natural processes: hard vs soft engineering techniques

One of the key principles underpinning effective coastal management is to work with natural processes. In the past, coastal management has tended to use ‘hard’ engineering. Hard engineering refers to the building of structures such as sea walls, groynes, artificial reefs, rock armour and breakwaters to protect coastlines from the erosive effects of waves or to trap sand. The main hard engineering techniques are shown in Source 1.

Many people in coastal areas like these hard options as the results are obvious and immediate. These structures tend to be expensive, however, and to have a high impact on natural environments. In many cases, they also create other problems or simply move the problem further along the coast.

By comparison, soft engineering coastal management techniques use the natural processes of the coast. They are often less expensive than hard
engineering options, and are considered to be more sustainable as they have less impact on the natural environment. There are two main types of soft engineering – beach nourishment and managed retreat.

- Beach nourishment replaces beach material such as sand that has been removed by erosion or longshore drift (see Source 2). Beaches are a natural defence against erosion and coastal flooding and are a desirable feature of the landscape for residents and tourists alike. The natural process that eroded the beach in the first place will continue, however, so the beach needs to be nourished again and again.

- Managed retreat involves the relocation of human settlements and hard engineering defences such as sea walls and groynes so that the natural processes of erosion and deposition can take place. In many cases, low-lying areas flood allowing salt marshes, wetlands and mudflats to re-establish themselves in these areas (see Source 3). Over time, these habitats provide a natural defence against further erosion. Unlike many hard engineering techniques, managed retreat can be relatively inexpensive. However, people living in these regions can be unwilling to relocate and need to be compensated for the loss of their properties.

Check your learning 3.8

Remember and understand

1. What are the main differences between hard and soft engineering techniques?
2. Describe the process that is occurring at Abbotts Hall Farm (see Source 3).

Apply and analyse

3. What is beach nourishment? Outline some of the possible positive and negative environmental impacts of this soft engineering technique.

Evaluate and create

4. Match the hard engineering technique with its function and possible disadvantage.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Function</th>
<th>Possible disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea wall</td>
<td>Absorbs the energy of waves and allows the build-up of sand to form a beach</td>
<td>Can be difficult and expensive to find and place suitable rocks to form the wall</td>
</tr>
<tr>
<td>Groyne</td>
<td>Protects cliffs, land and buildings from erosion and can also lessen the risk of coastal flooding from storm surges</td>
<td>May weaken longshore drift and allow sand to build up – sometimes creating a tombolo</td>
</tr>
<tr>
<td>Rock armour</td>
<td>Absorbs the energy of waves and provides a safe harbour for boats</td>
<td>Can ruin the appearance of the beach and be costly to maintain</td>
</tr>
<tr>
<td>Breakwater</td>
<td>Traps material carried by longshore drift and allows a beach to be built up</td>
<td>Can be very expensive to build and maintain. The breakwater reflects rather than absorbs wave energy so waves may continue to cause erosion elsewhere.</td>
</tr>
</tbody>
</table>

Source 2 In the Netherlands a vast sand peninsula 2 kilometres long and 1 kilometre wide has been constructed. Dubbed the ‘sand engine’, waves and currents are redistributing the peninsula along the shore where it is expected to nourish the beaches and form sand dunes.

Source 3 Managed retreat at Abbotts Hall Farm in Essex, England, has allowed salt marshes to be re-established.
3.9 Change at Rainbow Beach

Rainbow Beach is a small community located on a massive dune system that runs along the Queensland coast near the southern tip of Fraser Island. Formed over two million years, the dunes are part of one of the world’s greatest sand dune complexes that includes Fraser Island – the world’s largest sand island. In places, the dune system is 200 metres high and is held in place by large areas of scrub, forest and grasses.

While Aboriginal occupation of the region dates back 5500 years, European settlement began with a sand-mining operation north of the town in the mid-1960s. A road built to reach the sand mine was soon used by tourists to access Fraser Island and the new town of Rainbow Beach (see Source 1). The sand-mining operation finished in 1976 but the population of the small town continued to grow slowly. Now home to about 1000 full-time residents, visitor numbers swell in summer holiday periods as people arrive to use the camping ground as well as several motels and resorts.

The key management issue faced by the region is the erosion of the sand dunes, particularly during storms. This is an example of a potential conflict between natural processes and human activities. Sand dunes naturally change in response to long-term and short-term changes in wind patterns, sand supply and sea levels. The erosion of the foredune at Rainbow Beach (a dune ridge running parallel to the ocean) is a natural event. However, as the erosion is now putting buildings at risk and making the beach unsuitable for recreation activities, some local residents and the Gympie Regional Council are proposing to try to control the erosion.

A study of the region found that the risk of severe dune erosion at Rainbow Beach is very low but some people are still concerned that during a severe storm important buildings could be lost. The council plans to install large sandbags at the base of the dunes in front of the Surf Life Saving tower, along 260 metres, to slow erosion and protect a new amenity block that has been built on top of the dunes.

Source 1 An oblique aerial photograph of Rainbow Beach, looking south. The foredune and two blowout dunes (known locally as the Carlo Sand Blow and the Little Sand Blow) can be seen to the south of the town.

Source 2 A 2009 storm severely eroded the Rainbow Beach foredune, placing the Surf Life Saving tower in danger of collapse.
Coastcare at Rainbow Beach

There are 2000 Coastcare groups in Australia. Each group is made up of volunteers who work with local governments to identify problems and then work together to solve them. At Rainbow Beach, the local group has identified the loss of native vegetation, the trampling of dune vegetation by visitors accessing the beach, sand skiing on the sand blows, coastal erosion, environmental weeds, beach parking and rising sea levels due to climate change as the key issues in the area.

Some of the projects the Coastcare group at Rainbow Beach have undertaken include restoring Rainbow Beach coastal vegetation, removing weeds, protecting the dunes, monitoring bird populations and improving wetland areas.

For more information on the key concept of place, refer to page 6 of ‘The geography toolkit’.

Source 3 Rainbow Beach has a very active Coastcare group.

Source 4 A range of management strategies are in place at the main beach in Rainbow Beach. The fencing and walkway direct people to enter the beach on this path, protecting surrounding dunes.

Check your learning 3.9

Remember and understand
1 Describe the natural environment of Rainbow Beach.
2 Describe the human activities bringing about change to this place.
3 What is Coastcare?

Apply and analyse
4 Is the plan to place sandbags at the base of the dunes an example of hard or soft engineering? Give some reasons for your answer.
5 What management strategies can you identify in Sources 3 and 4? What is each strategy designed to achieve and how effective do you think each will be in achieving its aims?
6 What are the similarities and differences between changes at Rainbow Beach and changes at Abbotts Hall Farm in Essex? (See Source 3 on page 109.)

Evaluate and create
7 The Little Sand Blow is increasing in size as it moves westward. Construct a flow diagram or field sketch that shows the:
 • natural processes responsible for this movement
 • human activities that may be contributing to the movement
 • impacts of this movement on the environment
 • possible responses by the local government and Coastcare group.
In response to the serious issues facing coastal and marine ecosystems, a major United Nations conference held in 1992, called the Earth Summit, proposed a new system for managing coastal environments. Known as Integrated Coastal Zone Management (ICZM) it is now a widespread practice in many coastal nations, such as New Zealand, India, Canada, Bangladesh and the Netherlands.

The United Nations recognises that one of the common issues associated with coastal management is that government departments and interest groups often propose very different solutions to issues depending on their own needs and interests. In most cases, these solutions ignore the needs of other coastal users. The many coastal interest groups include residents, the tourism industry, fisheries, farmers, forestry, manufacturing, mining, waste disposal, marine transportation and real estate developers.

The key to ICZM is that it seeks to pull together the many groups and individuals with an interest in the coast in an integrated way when devising a management plan. The eight key principles of ICZM are outlined in Source 2. The success of ICZM is then dependent on funding, consistent government priorities and the expertise available to organise and manage large projects.

Source 1 The challenges facing many coastal environments require an integrated approach.

Source 2 The eight key principles of ICZM

<table>
<thead>
<tr>
<th>Eight principles of ICZM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involve all relevant governments</td>
</tr>
<tr>
<td>Take a long-term view</td>
</tr>
<tr>
<td>Use a holistic approach</td>
</tr>
<tr>
<td>Consider local conditions</td>
</tr>
<tr>
<td>Work with natural processes</td>
</tr>
<tr>
<td>Get people involved</td>
</tr>
<tr>
<td>Use a range of approaches</td>
</tr>
<tr>
<td>Be prepared to change strategy</td>
</tr>
</tbody>
</table>
Case study: ICZM in Bangladesh

Each ICZM plan is designed to best address the issues of the country it has been developed for. In Bangladesh, for example, the key issues are rising sea levels that bring saltwater floods to low-lying communities and the impacts of cyclones and storm surges. It is estimated that a 1-metre rise in sea level would leave 170000 square kilometres of land in Bangladesh submerged and 15 million people without a home (see Source 4). It will affect 1 million hectares of farmland and threaten the freshwater supplies of three major cities.

In response to these threats the Bangladeshi government, with the assistance of the World Bank and expertise from the Netherlands, has developed an ICZM strategy that focuses on disaster mitigation. To date 150000 hectares of mangroves have been replanted and more than 2500 cyclone shelters constructed.

Source 3 A nursery for mangrove trees. These will be used to replace some mangrove areas lost to farming and forestry and help to reduce flooding.

Source 4 Source: Oxford University Press

Check your learning 3.10

Remember and understand
1 What is ICZM?
2 How and why has ICZM been implemented in Bangladesh?

Apply and analyse
3 Source 3 on page 103 illustrates a significant problem in many coastal areas – marine dead zones. Work with a partner to use the eight key principles of ICZM to suggest how people could manage this issue. For example, using a holistic approach might mean getting farmers to be more careful in their use of fertilisers. Perhaps nutrient levels in streams could be monitored so that farmers could better manage their application of fertiliser, particularly in times of heavy rainfall.

Evaluate and create
4 What do you see as some of the barriers to ICZM principles being adopted in Bangladesh?
5 What do you see as some of the advantages in managing coastal changes using this approach?
The province of Zeeland in the Netherlands is a large agricultural area that is home to more than 380,000 people (Source 3). Much of the region lies below sea level. The land has been drained and reclaimed, creating new islands that are linked by bridges and tunnels. The area has an intricate series of levees (known as dykes) and dams that hold back the waters of the North Sea and regulate the flow of the rivers to the sea. The province also supports a large fishing industry and is home to the largest national park in the Netherlands.

In Zeeland, ICZM is used to reduce flooding from storm surges. The largest of the flood protection dams, the 9-kilometre-long Oosterscheldekering, links two of the largest islands in Zeeland. The 62 steel doors that make up the barrier can be lowered or raised in response to tides, storms and other sea level changes (see Source 1). For most of the year, seawater can flow freely beneath the dam so that marine ecosystems in the bays and estuaries of the delta can be maintained.

The dam, which was opened in 1986, has been declared one of the Seven Wonders of the Modern World and bears a plaque with the words, ‘Here the tide is ruled by the wind, the moon and us (the Dutch).’ Any long-term changes in sea level due to climate change will place greater pressure on this region and on these amazing engineering works.

The series of dams, storm surge barriers and bridges have provided many benefits for the people of the Zeeland region. As well as protecting them from storm surges and flooding, large areas of former saltwater estuaries have been converted into freshwater lakes creating a reliable supply of water. The dams and bridges also link together island communities that had been isolated for hundreds of years and the calmer waters of the river mouths and estuaries are safe for shipping and recreational boating.

Source 1 The Oosterscheldekering storm surge barrier in Zeeland

Source 2 An aerial photograph of Zeeland showing a number of dams and storm surge barriers (including Oosterscheldekering)
Check your learning 3.11

Remember and understand
1 Why was the Oosterscheldekering constructed?
2 Locate the province of Zeeland in an atlas and describe its location.

Apply and analyse
3 Use the eight key principles of ICZM (see Source 2 on page 112) to comment on the flood protection provided by Oosterscheldekering. For example, how does this barrier take local conditions into account?
4 Examine Sources 2 and 3.
 a What factors do you think may be responsible for the large sandbanks forming in the Oosterschelde?
 b Identify the different land uses on the island of Schouwen-Duiveland.
 c Describe the relief of the island using the contour lines on the map.
 d Describe the southern shore of the island.

Evaluate and create
5 Draw a sketch map of the vertical aerial photograph in Source 2. On your map, label the key natural and built features of the landscape.
6 The Oosterscheldekering is only one part of a much larger flood protection scheme. Use Google Earth to examine the region and find other examples of flood protection.
3.12 Protecting the coast

An effective way to manage and protect natural environments such as coasts is to give them legal protection. This helps ensure that harmful activities are banned or limited. In Australia, this is achieved mainly through a system of national parks (on land) and marine reserves (in the surrounding seas and oceans).

National parks

Each state and territory of Australia has a large number of special places, both coastal and inland, that the government has decided to protect. These might be as small as a single historic house or beach, or as large as a wilderness or national park. Despite the name, virtually all of Australia’s more than 550 national parks are the responsibility of the individual state and territory governments.

Although management strategies differ between states, the common ideals are that the land, plants and animals within the parks have protection from activities that threaten their existence and that people should be able to visit these special places. This can lead to problems, as visitors who come to see these areas in their natural beauty may threaten the very environment they are visiting. The managers of the national parks have the task of controlling what visitors do in each park by limiting or restricting certain activities in sensitive areas.

Marine reserves

While national parks protect special places on land, Australia’s diverse marine environments also need to be protected. In 2012, the Australian government announced the creation of one of the world’s largest marine reserve networks. Around 3.1 million square kilometres of our oceans are now managed mainly for the purposes of biodiversity conservation. This is an area roughly equivalent to the land area of Queensland and the Northern Territory combined.

Managing a marine reserve is particularly challenging because, unlike national parks on land, fences and signs aren’t easily erected to limit access to particularly sensitive areas. Instead, marine reserves are divided into zones, and certain activities are allowed, banned or limited in each zone. It is the responsibility of anyone who enters a marine reserve to be aware of the activities permitted within each zone.

Every marine reserve in Australia, except for the Great Barrier Reef which is recognised as a special case, has been assigned a particular management category (see Source 2). These are the same as those adopted in other countries and have been developed by the International Union for the Conservation of Nature (IUCN).

<table>
<thead>
<tr>
<th>IUCN number</th>
<th>Name of reserve type</th>
<th>Purpose of the reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>Strict nature reserve</td>
<td>Managed primarily for scientific research or environmental monitoring</td>
</tr>
<tr>
<td>II</td>
<td>National park</td>
<td>Protected and managed to preserve its natural condition</td>
</tr>
<tr>
<td>IV</td>
<td>Habitat/species management area</td>
<td>Managed primarily to ensure the maintenance of habitats or to meet the requirements of specific species</td>
</tr>
<tr>
<td>VI</td>
<td>Managed resource protected area</td>
<td>Managed to ensure long-term protection and maintenance of biological diversity with a sustainable flow of natural products and services to meet community needs</td>
</tr>
</tbody>
</table>

Source 1 Royal National Park is Australia’s oldest. Established in 1879, it protects large areas of coastal rainforest and ancient sand dunes.

Source 2 The IUCN management categories for the conservation of marine reserves

Source 3 Freycinet Marine Reserve on Tasmania’s east coast includes large areas designated as strict nature reserves due to the biodiversity of the coast’s offshore seamounts (undersea mountains) and bird populations.
Remember and understand

1 In what ways are natural environments protected in Australia?

2 What are the ideals behind the management strategies implemented in national parks?

Apply and analyse

3 Examine Source 4.
 a Where are Australia’s largest marine reserves located?
 b Describe the location of marine reserves in the state in which you live.

4 Examine Source 1, showing a person in a protected coastal area. Describe what they are doing and how this may impact on the natural environment. How could park managers in this area limit these impacts?

Evaluate and create

5 There were many objections to the Australian government announcement in 2012 that millions of square kilometres of ocean were to become marine reserves. In small groups consider which Australian groups would be likely to support this announcement and which would be likely to oppose it. Brainstorm the arguments that each of these groups would use to support their points of view.

6 Source 4 shows the extent of Australia’s Exclusive Economic Zone (EEZ). Research this area and find out the benefits for Australia in having such a large EEZ. You may also like to find out about the Timor Gap and how this was created.
3.13 Reducing the impacts of coastal tourism

Tourism is the world’s largest industry. It generates more than $US8 trillion a year in income and employs about 220 million people worldwide. Tourism in coastal areas has experienced a surge in recent years, and for many coastal communities it has become the largest contributor to their economy. While tourism has the potential to alleviate poverty and bring better infrastructure such as new roads and public services, it also has the potential to bring about major environmental degradation.

Tourism not only attracts visitors to coastal areas but also locals, who move to the coast for work, providing the goods and services tourists require. Tourism also brings developments such as hotels, jetties, roads, airports and shopping strips, often with minimal or hurried planning. The result is that many coastal tourism hubs are under significant environmental pressure.

The potential negative environmental impacts of tourism are many. Greater numbers of people bring increased pollution and landfill (see Source 1). As ecosystems such as mangroves, wetlands and reefs are removed to make way for hotel developments, there is a subsequent decline in biodiversity and an increased risk of beach loss from erosion and natural disasters.

In addition, an increased demand for fresh water, food (especially seafood), energy and sanitation make tourism a huge consumer of natural resources.

Ecotourism: a way forward?

Ecotourism is one option that coastal tourism operators are using to make their industry more sustainable. It is also a strong marketing tool, appealing to tourists who want more environmentally friendly travel. The International Ecotourism Society (TIES) defines ecotourism as ‘responsible travel to natural areas that conserves the environment and improves the wellbeing of local people’. TIES believes that those who implement and participate in ecotourism activities should:

• minimise environmental impacts
• build environmental and cultural awareness and respect
• provide positive experiences for visitors and hosts
• provide direct financial support for conservation
• provide financial benefits and empowerment for local people
• ensure sensitivity to the host country’s political, environmental and social climate.

Source 1 Cruise ships that carry up to 4000 passengers each contribute to the 70,000 tonnes of waste generated annually from tourism in the Caribbean region.
The Penguin Parade

One of Victoria's most popular tourist attractions is the nightly arrival of hundreds of Little Penguins at Summerlands Beach on Phillip Island. This natural event attracts around 1 million visitors per year, more than half of whom are from overseas. As well as a tourist attraction, the Penguin Parade is also an example of minimal impact ecotourism and conservation.

As a non-profit organisation, the Phillip Island Nature Park uses the income generated from the parade to protect, conserve and restore the natural environment of the region. The organisation has become a world expert on the Little Penguins as well as carrying out vital research on seals and seabirds. In order to protect the penguins, rangers undertake large- and small-scale revegetation and habitat restoration programs. As a result, the penguin population climbed from 19,000 in the 1980s to 32,000 in 2013.

Much of the restoration and revegetation work is on the site of a former housing estate located adjacent to the Penguin Parade. Between 1985 and 2010, the Victorian government purchased and removed hundreds of holiday homes, as well as the roads, gardens, power cables and septic tanks that made up the Summerlands Estate. The area is now prime habitat for the penguins. Future plans include moving the visitor centre and car parks so that the land on which they now sit can also be restored to natural habitat.

For more information on the key concept of sustainability, refer to page 9 of ‘The geography toolkit’.

Source 2 Raised boardwalks and viewing platforms minimise the environmental impact of visitors to the Penguin Parade and allow penguins to move freely from the ocean to their burrows every evening.

Check your learning 3.13

Remember and understand

1. What is ecotourism?
2. In what ways can the Penguin Parade on Phillip Island be considered to be an example of ecotourism?

Apply and analyse

3. Source 1 shows a cruise ship docking at a Caribbean port. Describe the changes that have been made to the coast as a result of tourism that can be seen in this photo.
4. Compare these changes with those that have occurred at the Penguin Parade.

Evaluate and create

5. Imagine that an international tourism operator has proposed to build a port for cruise ships at Rainbow Beach (see Source 1 on page 110) and that you have been appointed the company’s environmental consultant. Brainstorm the impacts of this development on the natural environment. Use the ecotourism principles provided to make recommendations that minimise these impacts. Prepare a report for the tourism operator with your recommendations. You may like to include a map and sketches in your report.
Prior to European colonisation in 1788, the coastal areas of Australia supported large numbers of Aboriginal and Torres Strait Islander peoples. The coasts provided a reliable source of food both from the sea and the surrounding land.

Today, nearly half of all Indigenous Australians live near the coast. Many maintain a close association with the coast through cultural and historic connections, through continued use of coastal resources and by law. In the Northern Territory, for example, Aboriginal communities own and manage approximately 85 per cent of the coastal land.

Coastal places with special significance to Indigenous Australians are under the same environmental threats as other coastal places: from population and economic growth, land use changes, climate change and the arrival of invasive species. Indigenous communities are now working with government to restore lands that are important to them. This joint approach means that factors of Indigenous heritage are taken into account when decisions are made about the use and restoration of degraded areas.

Case study: Indigenous management of the Coorong

The land and waters is a living body. We the Ngarrindjeri people are a part of its existence. The land and waters must be healthy for the Ngarrindjeri people to be healthy. We are hurting for our Country. The Land is dying, the River is dying, the Kurangk (Coorong) is dying and the Murray Mouth is closing. What does the future hold for us?

Tom Trevorrow, Ngarrindjeri Elder, Camp Coorong, 2002

The region known as the Coorong, where the Murray River reaches the sea, covers an area of 14 000 square kilometres. The Coorong was recognised as a Wetland of International Importance and as a breeding ground for many bird and fish species by the Ramsar Convention on Wetlands in 1985. Due to a combination of factors, including water extraction in the Murray–Darling Basin, drought and barrages (dams) built across the Murray to hold back sea water, the region has become severely degraded. In particular, the waters of the Coorong Lagoon and lakes have become saltier than the sea, wetlands have dried out and acidic soils have become exposed. Another cause of this degradation has been the building of dams that collect water during wet seasons and then release this water during dry seasons. This has disrupted the natural cycle of the Murray River of floods and droughts and had a dramatic effect on the natural ecosystems of the river, particularly at its mouth. In some years, so little water flows through the mouth that it closes, cutting off the lakes of the region from the sea.

The traditional owners of the region, the Ngarrindjeri people, maintain a strong connection with the lands and water of the Coorong. They believe that the health of their nation is closely linked to the environmental health of the region, and that a
freshwater flow that allows plants and animals to thrive must be maintained.

The Ngarrindjeri community through the Ngarrindjeri Regional Authority (NRA) has formed a close relationship with the South Australian Department of Environment, Water and Natural Resources (DEWNR) to deal with short-term crises in the region and to plan for a sustainable future. This has resulted in the adoption of a long-term plan which aims to secure a future for the region as a ‘healthy, productive and resilient wetland system that maintains its international importance’. The plan includes a number of specific goals:

- to protect and restore natural habitats
- to restore viable populations of native bird, fish and other animal species. Restoring the natural flow of fresh water to the Coorong and Lower Lakes are seen as a key component of this goal.
- to improve water quality and increase flows through the wetlands. It is proposed, for example, that very salty water be pumped out of the lagoon to the sea.
- to recognise the Ngarrindjeri community’s association with the area.

Large areas of dunes, wetlands and farmland have already been replanted using native plant species as the first step in this plan to restore the Coorong area.

COORONG: INDIGENOUS LANDS AND NATIONAL PARKS

Source 2

Source: Oxford University Press

Check your learning 3.14

1 Why did many Aboriginal and Torres Strait Islander peoples live near the coast in the past?
2 Why are the Ngarrindjeri people particularly concerned about the health of the Coorong ecosystems?
3 Use Source 1 to describe the natural environment of the Coorong and Lower Lakes. Include the water and land features that you can identify.
4 Examine Source 2.
 a Describe and account for the location of Indigenous lands.
 b Describe the locations of the barrages. Why have the barrages been built in these places? How would they change the natural environment of Lake Alexandrina and the Coorong?
5 Use the eight key ICZM principles shown in Source 2 on page 112 to devise a strategy to improve the health of the Coorong ecosystem.
6 Research which other wetlands in Australia are listed in the Ramsar Convention.
Ningaloo Coast

On the north-west tip of Western Australia is one of the world’s most spectacular coastal environments. Long white beaches run along the shore, and visitors can swim out from the beach to Australia’s longest fringing reef (a reef that lies extremely close to shore). The region has about 300,000 visitors a year, many of them arriving between April and July for a chance to snorkel with whale sharks. The region is also home to dugongs and visited by humpback whales and greenback turtles.

Much of the region is under some form of legal protection as part of the Ningaloo Marine Reserve and Cape Range National Park. It is also Australia’s newest World Heritage site, having been added to the World Heritage List in 2011.

Though a remote and relatively pristine area, the Ningaloo Coast faces a number of potential environmental threats. These include:

- oil and gas exploration off the coast
- damage to coral reefs from boat owners anchoring in the fragile reef areas
- illegal fishing
- plastic bags killing turtles and whales by intestinal blockage
- damage to vegetation from off-road driving
- waste disposal and pollution
- increasing level of water consumption
- potential for bushfires
- invasive species (foxes, goats, cats) destroying or attacking native plants and animals.

Other potential issues in the area include a RAAF bombing range south of Cape Range National Park, which may threaten important limestone caves and sinkholes, and livestock from local farms that could damage vegetation if they are not appropriately managed. In addition, the development of oil and gas reserves in offshore basins and shelves could present a future threat to the coast and reef.

Source 1 The small town of Coral Bay is used as a launching point for whale watching and fishing boats.

Analysing complex maps

Complex maps contain more than one set of information. Geographers use complex maps to analyse different features, reveal patterns and explain links between features in a given area. You can analyse a complex map by following these steps:

Step 1 Look carefully at the map and read its title to make sure you understand what is being shown.

Step 2 Examine the map’s legend. Complex maps can have more than one part to a legend, and these parts will be represented on the map in different ways. For example, in Source 2 areas of colour are used to show the location of recreational use zones and state marine reserves. Different symbols are also used to show roads and coastal water boundaries.

Step 3 Train your eyes to look for one set of information at a time. For example, look at solid blocks of colour on the map and work out what they tell you.
Step 4 Move to a different set of information by selecting another symbol or block of colour from the legend. Examine the map to identify this symbol or area of colour.

Step 5 Look for concentrations of the same symbol in areas to see if patterns exist.

Step 6 Note any patterns you can find on the map between different features and locations.

Step 7 Describe the degree to which patterns are connected.

Step 8 Try to suggest reasons for the connection between the two patterns.

Apply the skill

Look at the map of Ningaloo Marine Reserve (Source 2).

1 Find the symbol for multiple use marine zones in the legend and then locate these areas on the map. Describe the concentration of these areas.

2 What relationship is there between the multiple use marine zones and the location of recreational use areas?

3 Describe the location of the Ningaloo World Heritage area.

Extend your understanding

Do some further reading on the Internet to complete the following tasks.

1 Research Ningaloo’s World Heritage listing.
 a What does World Heritage mean?
 b Why are sites placed on this list?
 c Why was the Ningaloo Coast added to the list?

2 In the early 2000s, a large resort and marina called Coral Coast Resort was planned for the coastal area to the north of Coral Bay known as Maud’s Landing. Find out about these plans and why the resort was not built.